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NONAXISYMMETRIC ELASTOPLASTIC IMPACT

OF A PARABOLIC BODY ON A SPHERICAL SHELL

UDC 539.3D. G. Biryukov and I. G. Kadomtsev

A method is proposed to calculate a spherical shell under nonaxisymmetric impact of a massive body.
The motion of the shell is described by momentless equations, which are solved using the Laplace
transformation and an asymptotic expansion of the required quantities in a small parameter. The
contact interaction force P (t) was determined for the elastoplastic model of local bearing deformation
for a parabolic impactor. Plots of the solution are given. The validity of the results is confirmed by
good agreement between the solution and the limiting cases — an axisymmetric impact and an impact
on a half-space.
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Let us consider a nonaxisymmetric normal impact of a massive body on a circular sector of a contour-hinged
spherical shell. The general displacements of the shell are considered elastic, and its local displacements in the zone
of contact of the body with the shell are considered elastoplastic. At the initial time, the shell is at rest and the
body has a velocity V0 that is much lower than the velocity of elastic waves in the shell. This allows us to ignore the
inertia of local bearing deformation in the contact region. As a result, the dependence of the local bearing strain α

on the contact force P can be determined in a similar manner as in the static problem.
We use coordinate axes directed along a meridian ϕ and a parallel θ. The impact is performed at a point

(ϕ1, 0) by a body of mass m with elastic constants E2 and ν2, a plastic constant k2, and a curvature radius at the
contact point R2. The apex angle of the shell arc is ϕ0.

Denoting the normal displacement of the shell at the contact point by w and the displacement of the
impacting body by s, we have the following relation [1]:

s = w + α. (1)

The displacement of the impactor s is determined by integrating the differential equation of motion for the
body ms̈ = −P (t) subject to the initial conditions s0 = 0 and ṡ0 = V0:

s(t) = V0t−
1
m

t∫
0

t1∫
0

P (t2) dt1 dt2. (2)

The displacement of the shell under the action of the force P (t) is determined from the momentless equations
of motion for spherical shells [2]:

(Nϕ sinϕ),ϕ + Nϕθ,θ −Nθ cos ϕ = ρhR1üϕ sinϕ,

(Nϕθ sinϕ),ϕ + Nθ,θ + Nϕθ cos ϕ = ρhR1üθ sinϕ, (3)

Nϕ + Nθ = −ρhR1ẅ + q3R1.
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Here

Nϕ = E1h((1− ν2
1)R1)−1(uϕ,ϕ + w + ν1(uϕ cot ϕ + uθ,θ sin−1 ϕ + w)),

Nθ = E1h((1− ν2
1)R1)−1(uϕ cot ϕ + uθ,θ sin−1 ϕ + w + ν1(uϕ,ϕ + w)),

Nϕθ = E1h(2(1 + ν1)R1)−1(uθ,ϕ − uθ cot ϕ + uϕ,θ sin−1 ϕ)

(ρ is the density of the material, h and R1 are the thickness and radius of the shell, q3 is the load, and E1 and ν1

are the elastic constants of the shell). The plastic constant of the shell is denoted by k1.
The boundary conditions are given by

uϕ

∣∣∣
ϕ=ϕ0

= 0, w
∣∣∣
ϕ=ϕ0

= 0. (4)

We introduce the following dimensionless quantities:

v =
uϕ

R1
, u =

uθ

R1
, w =

w

R1
, τ =

tc

R1
, c2 =

E1

(1− ν2
1)ρ

.

Then, after elimination of the forces Nϕ, Nθ, and Nϕθ, system (3) becomes

v,ϕϕ sinϕ + 0.5(1− ν1)v,θθ sin−1 ϕ + 0.5(1 + ν1)u,θϕ + v,ϕ cos ϕ

− (cot ϕ cos ϕ + ν1 sinϕ)v − 0.5(3− ν1)u,θ cot ϕ + (1 + ν1)w,ϕ sinϕ = v,ττ sinϕ,

0.5(1− ν1)u,ϕϕ sinϕ + u,θθ sin−1 ϕ + 0.5(1 + ν1)v,θϕ + 0.5(1− ν1)u,ϕ cos ϕ

+ 0.5(1− ν1)(sinϕ− cot ϕ cos ϕ)u + 0.5(3− ν1)v,θ cot ϕ + (1 + ν1)w,θ = u,ττ sinϕ,

(1 + ν1)(v,ϕ + v cot ϕ + 2w + u,θ sin−1 ϕ) = −w,ττ + q,

where q = (1− ν2
1)(E1h)−1R1q3.

Let us make the replacements V = v sinϕ and U = u sinϕ:

V,ϕϕ + 0.5(1− ν1)V,θθ sin−2 ϕ + 0.5(1 + ν1)U,θϕ sin−1 ϕ− V,ϕ cot ϕ

+ (1− ν1)V − 2U,θ cos ϕ sin−2 ϕ + (1 + ν1)w,ϕ sinϕ = V,ττ ,

0.5(1− ν1)U,ϕϕ + U,θθ sin−2 ϕ + 0.5(1 + ν1)V,θϕ sin−1 ϕ− 0.5(1− ν1)U,ϕ cot ϕ

+ (1− ν1)U + (1− ν1)V,θ cos ϕ sin−2 ϕ + (1 + ν1)w,θ = U,ττ ,

(1 + ν1)(V,ϕ sin−1 ϕ + 2w + U,θ sin−2 ϕ) = −w,ττ + q.

Applying the Laplace transformation over time t and denoting the transforms of V , U , w, and q by V ∗, U∗,
w∗, and q∗, respectively, we obtain

V ∗
,ϕϕ + 0.5(1− ν1)V ∗

,θθ sin−2 ϕ + 0.5(1 + ν1)U∗
,θϕ sin−1 ϕ

− V ∗
,ϕ cot ϕ + (1− ν1 − p2)V ∗ − 2U∗

,θ cos ϕ sin−2 ϕ + (1 + ν1)w∗,ϕ sinϕ = 0,

0.5(1− ν1)U∗
,ϕϕ + U∗

,θθ sin−2 ϕ + 0.5(1 + ν1)V ∗
,θϕ sin−1 ϕ− 0.5(1− ν1)U∗

,ϕ cot ϕ (5)

+ (1− ν1 − p2)U∗ + (1− ν1)V ∗
,θ cos ϕ sin−2 ϕ + (1 + ν1)w∗,θ = 0,

(1 + ν1)(V ∗
,ϕ sin−1 ϕ + (2 + p2(1 + ν1)−1)w∗ + U∗

,θ sin−2 ϕ) = q∗.

From the third equation, we obtain the following expression for U∗
,θ:

U∗
,θ = (q∗ − (1 + ν1)V ∗

,ϕ sin−1 ϕ− (2(1 + ν1) + p2)w∗)(1 + ν1)−1 sin−2 ϕ.

We substitute U∗
,θ into (5), previously differentiating the second equation with respect to θ. As a result, the

system becomes
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0.5(1− ν1)V ∗
,ϕϕ + 0.5(1− ν1)V ∗

,θθ sin−2 ϕ + 0.5(1− ν1)V ∗
,ϕ cot ϕ + (1− ν1 − p2)V ∗

− 0.5p2w∗,ϕ sinϕ + (1− ν1)(2 + p2(1 + ν1)−1)w∗ cos ϕ + 0.5q∗,ϕ sinϕ− (1− ν1)(1 + ν1)−1q∗ cos ϕ = 0,

−0.5(1− ν2
1)V ∗

,ϕϕϕ sinϕ− 0.5(1− ν2
1)V ∗

,θθϕ sin−1 ϕ + (1− ν2
1)V ∗

,θθ cot ϕ (6)

− 0.5(1− ν2
1)V ∗

,ϕϕ cos ϕ + ((1 + ν1)p2 sinϕ + 0.5(1− ν2
1)(cos2 ϕ− sin2 ϕ) sin−1 ϕ)V ∗

,ϕ

− 0.5(1− ν1)(2(1 + ν1) + p2)w∗,ϕϕ sin2 ϕ + ((1 + ν1)2 − (2(1 + ν1) + p2))w∗,θθ

− 1.5(1− ν1)(2(1 + ν1) + p2)w∗,ϕ sinϕ cos ϕ + p2(2(1 + ν1) + p2)w∗ sin2 ϕ

+ 0.5(1− ν1)q∗,ϕϕ sin2 ϕ + q∗,θθ + 1.5(1− ν1)q∗,ϕ sinϕ cos ϕ− p2q∗ sin2 ϕ = 0.

The solution of (6) is sought as series in Legendre polynomials that satisfy boundary conditions (4):

w∗ =
∞∑

n=0

∞∑
m=0

w2n+1mP2n+1(cos δ1ϕ) cos mθ,

V ∗ =
∞∑

n=0

∞∑
m=0

V2n+1mP2n+1(cos δ1ϕ) cos mθ, δ1 = π/(2ϕ0).

The load q(t, ϕ, θ) from the concentrated force P (t)δ(ϕ−ϕ1)δ(θ−0) is also expanded in a series in Legendre
polynomials:

q =
P (t)

2πR2
1(1− cos ϕ0)

∞∑
n=0

∞∑
m=0

(4n + 3)P2n+1(cos δ1ϕ1)P2n+1(cos δ1ϕ) cos mθ,

q∗ =
P ∗(p)

2πR2
1(1− cos ϕ0)

∞∑
n=0

∞∑
m=0

(4n + 3)P2n+1(cos δ1ϕ1)P2n+1(cos δ1ϕ) cos mθ.

Substituting the expansions of w∗, V ∗, and q∗ into (6) and using orthogonality property of the system of
cosines on the segment [−π, π], we obtain

0.5(1− ν1)
∞∑

n=0

V2n+1mP2n+1,ϕϕ − 0.5(1− ν1)m2 sin−2 ϕ
∞∑

n=0

V2n+1mP2n+1

+ 0.5(1− ν1) cot ϕ
∞∑

n=0

V2n+1mP2n+1,ϕ + (1− ν1 − p2)
∞∑

n=0

V2n+1mP2n+1

− 0.5p2 sinϕ
∞∑

n=0

w2n+1mP2n+1,ϕ + (1− ν1)(2 + p2(1 + ν1)−1) cos ϕ
∞∑

n=0

w2n+1mP2n+1

+ 0.5C sinϕ
∞∑

n=0

(4n + 3)P2n+1(cos δ1ϕ1)P2n+1,ϕ

− (1− ν1)(1 + ν1)−1C cos ϕ
∞∑

n=0

(4n + 3)P2n+1(cos δ1ϕ1)P2n+1 = 0,

−0.5(1− ν2
1) sinϕ

∞∑
n=0

V2n+1mP2n+1,ϕϕϕ + 0.5(1− ν2
1)m2 sin−1 ϕ

∞∑
n=0

V2n+1mP2n+1,ϕ

− (1− ν2
1)m2 cot ϕ

∞∑
n=0

V2n+1mP2n+1 − 0.5(1− ν2
1) cos ϕ

∞∑
n=0

V2n+1mP2n+1,ϕϕ
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Fig. 1. Functions P (t) for ϕ1 = 0.001 rad: P1 = 18.5 kN, P2 = 18.9 kN, P3 = 54.4 kN,
t1 = 4.165 · 10−5 sec, t2 = 4.266 · 10−5 sec, and t3 = 10.767 · 10−4 sec.

+ ((1 + ν1)p2 sinϕ + 0.5(1− ν2
1)(cos2 ϕ− sin2 ϕ) sin−1 ϕ)

∞∑
n=0

V2n+1mP2n+1,ϕ

− 0.5(1− ν1)(2(1 + ν1) + p2) sin2 ϕ
∞∑

n=0

w2n+1mP2n+1,ϕϕ + ((1 + ν1)2 − (2(1 + ν1) + p2))m2
∞∑

n=0

w2n+1mP2n+1

(7)

− 1.5(1− ν1)(2(1 + ν1) + p2) sinϕ cos ϕ
∞∑

n=0

w2n+1mP2n+1,ϕ + p2 sin2 ϕ(2(1 + ν1) + p2)
∞∑

n=0

w2n+1mP2n+1

+ 0.5(1− ν1)C sin2 ϕ

∞∑
n=0

(4n + 3)P2n+1(cos δ1ϕ1)P2n+1,ϕϕ −m2C

∞∑
n=0

(4n + 3)P2n+1(cos δ1ϕ1)P2n+1

+1.5(1− ν1)C sinϕ cos ϕ
∞∑

n=0

(4n + 3)P2n+1(cos δ1ϕ1)P2n+1,ϕ

−p2C sin2 ϕ
∞∑

n=0

(4n + 3)P2n+1(cos δ1ϕ1)P2n+1 = 0.

Here C = P ∗(p)(2πR2
1(1− cos ϕ0))−1 and P2n+1 = P2n+1(cos δ1ϕ).

The coefficients V2n+1m and w2n+1m are obtained using the method of a small parameter ε = p−2. We note
that using this method, Kil’chevskii studied impact on an arbitrary infinite shell without boundary conditions and
obtained a number of qualitative results [3]. We represent the required quantities as

V2n+1m(p) = V 0
2n+1mε0 + V 1

2n+1mε1 + V 2
2n+1mε2 + O(ε3),

w2n+1m(p) = w0
2n+1mε0 + w1

2n+1mε1 + w2
2n+1mε2 + O(ε3).

Substituting these expansions into system (7) and collecting the coefficients at identical powers of ε, we
obtain V i

2n+1m and wi
2n+1m (i = 0, 1, 2). For w2n+1m, we have

w2n+1m(p) = C(4n + 3)P2n+1(cos δ1ϕ1)(p−2 − 2(1 + ν1)p−4) + O(ε3).

Using the inverse Laplace transformation for the displacement of the shell w and taking into account the
first three terms of the expansion in (τ − τ1), we have

w(ϕ, θ, τ) =
1− ν2

1

2πhE1R1(1− cos ϕ0)

τ∫
0

∞∑
n=0

∞∑
m=0

(4n + 3)P (τ1)
(
(τ − τ1)−

2
3!

(1 + ν1)(τ − τ1)3
)

× P2n+1(cos δ1ϕ1)P2n+1(cos δ1ϕ) cos mθ dτ1. (8)
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Fig. 2. Functions P (t) for ϕ1 = 0.01 rad: P1 = 18.5 kN, P2 = 36.7 kN, P3 = 54.4 kN,
t1 = 4.165 · 10−5 sec, t2 = 7.720 · 10−5 sec, and t3 = 10.767 · 10−4 sec.

Fig. 3. Functions P (t) for ϕ1 = 0.1 rad: P1 = 18.5 kN, P2 = 51.6 kN, P3 = 54.4 kN,
t1 = 4.165 · 10−5 sec, t2 = 10.361 · 10−4 sec, and t3 = 10.767 · 10−4 sec.

For α, we use the following elastoplastic model [4]:

α =


bP 2/3, dP/dt > 0, Pmax < P1,

bfP 2/3 + αp(Pmax), dP/dt < 0, Pmax > P1,

(1 + β)c1P
1/2 + (1− β)Pd, dP/dt > 0, Pmax > P1.

(9)

Here b = (9/(16E2R))1/3, E = E1E2((1 − ν2
1)E2 + (1 − ν2

2)E1)−1, R−1 = R−1
2 − R−1

1 , P1 = χ3(3R/(4E))2,
χ = πkλ, k is the least of the two plastic constants of the colliding bodies, λ = 5.7, bf = R

−1/3
f (3/(4E))2/3,

Rf = (4/3)EP
1/2
maxχ−3/2, αp(Pmax) = (1 − β)Pmax(2χRp)−1, R−1

p = R−1 − R−1
f , β = 0.33, c1 = 3χ1/2(8E)−1, and

d = (2χR)−1.
Substituting (2), (8), and (9) into (1), we arrive at the nonlinear integral equation for P (t), which is solved

using the Timoshenko iterative procedure [1, 5].
Numerical solutions of the problem are plotted as curves of P (t) in Figs. 1–3 for the following values of the

problem parameters: R1 = 1 m, h = 0.01 m, ϕ0 = 90◦, R2 = 0.02 m, and m = 0.25 kg; the material is steel. The
velocity is V0 = 10 m/sec. Curve 1 in the figures corresponds to an axisymmetric impact, 2 to a nonaxisymmetric
impact, and 3 to an impact on a half-space.

It can be seen from the plots that as the impact angle ϕ1 tends to zero, the interaction force P (t) in the
nonaxisymmetric case approaches the value of P (t) in the axisymmetric case. Conversely, as ϕ1 tends to ϕ0, the
plots for the cases of a nonaxisymmetric impact and an impact on a half-space approach one another. Physically,
this implies that as the impact point approaches the fixing point, the shell behaves itself more rigidly.
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